Parameter and State Model Reduction for Large-Scale Statistical Inverse Problems
نویسندگان
چکیده
A greedy algorithm for the construction of a reduced model with reduction in both parameter and state is developed for efficient solution of statistical inverse problems governed by partial differential equations with distributed parameters. Large-scale models are too costly to evaluate repeatedly, as is required in the statistical setting. Furthermore, these models often have high dimensional parametric input spaces, which compounds the difficulty of effectively exploring the uncertainty space. We simultaneously address both challenges by constructing a projection-based reduced model that accepts low-dimensional parameter inputs and whose model evaluations are inexpensive. The associated parameter and state bases are obtained through a greedy procedure that targets the governing equations, model outputs, and prior information. The methodology and results are presented for groundwater inverse problems in one and two dimensions.
منابع مشابه
Data-Driven Combined State and Parameter Reduction for Extreme-Scale Inverse Problems
In this contribution we present an accelerated optimization-based approach for combined state and parameter reduction of a parametrized linear control system which is then used as a surrogate model in a Bayesian inverse setting. Following the basic ideas presented in [Lieberman, Willcox, Ghattas. Parameter and state model reduction for large-scale statistical inverse settings, SIAM J. Sci. Comp...
متن کاملScalable posterior approximations for large-scale Bayesian inverse problems via likelihood-informed parameter and state reduction
Two major bottlenecks to the solution of large-scale Bayesian inverse problems are the scaling of posterior sampling algorithms to high-dimensional parameter spaces and the computational cost of forward model evaluations. Yet incomplete or noisy data, the state variation and parameter dependence of the forward model, and correlations in the prior collectively provide useful structure that can b...
متن کاملNon-linear model reduction for uncertainty quantification in large-scale inverse problems
We present a model reduction approach to the solution of large-scale statistical inverse problems in a Bayesian inference setting. A key to the model reduction is an efficient representation of the non-linear terms in the reduced model. To achieve this, we present a formulation that employs masked projection of the discrete equations; that is, we compute an approximation of the non-linear term ...
متن کاملAn Adaptive Approach to Increase Accuracy of Forward Algorithm for Solving Evaluation Problems on Unstable Statistical Data Set
Nowadays, Hidden Markov models are extensively utilized for modeling stochastic processes. These models help researchers establish and implement the desired theoretical foundations using Markov algorithms such as Forward one. however, Using Stability hypothesis and the mean statistic for determining the values of Markov functions on unstable statistical data set has led to a significant reducti...
متن کاملParameter and State Model Reduction for Bayesian Statistical Inverse Problems
Decisions based on single-point estimates of uncertain parameters neglect regions of significant probability. We consider a paradigm based on decision-making under uncertainty including three steps: identification of parametric probability by solution of the statistical inverse problem, propagation of that uncertainty through complex models, and solution of the resulting stochastic or robust ma...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- SIAM J. Scientific Computing
دوره 32 شماره
صفحات -
تاریخ انتشار 2010